ホーム » 分布 » 指数分布

指数分布」カテゴリーアーカイブ

投稿一覧

2016 Q2(4)

指数分布の上側確率の推定量が、ガンマ分布に従う確率変数の式で表され、それが不偏推定量であることを示しました。

 

コード

\widetilde{Q}(c)はnによらずe^{-\lambda c}に近づきます。nを1~20に変化させてシミュレーションして確認してみます。

# 2016 Q2(4)  2024.11.19

import numpy as np
import matplotlib.pyplot as plt

# パラメータ設定
lambda_value = 2  # 固定されたλ
c = 1.0  # 定数c
n_values = range(1, 21)  # nを1から20まで変化させる
sample_size = 1000  # シミュレーションのサンプルサイズ

simulated_expectations = []  # シミュレーション期待値を格納するリスト
theoretical_expectations = []  # 理論値を格納するリスト

# 修正版コード
for n in n_values:
    # ガンマ分布のサンプルを生成 (Y ~ Gamma(n, λ))
    Y_samples = np.random.gamma(shape=n, scale=1/lambda_value, size=sample_size)
    
    # 条件付きで (1 - c/Y)^(n-1) を計算
    values = np.where(Y_samples >= c, (1 - c / Y_samples)**(n - 1), 0)
    
    # シミュレーション期待値を計算
    simulated_expectations.append(np.mean(values))
    
    # 理論値 e^(-λc) を計算
    theoretical_expectations.append(np.exp(-lambda_value * c))

# グラフの描画
plt.figure(figsize=(10, 6))
plt.plot(n_values, theoretical_expectations, 'r-o', label='理論値: e^(-λc)', linewidth=2)
plt.plot(n_values, simulated_expectations, 'b-s', label='シミュレーション期待値', linewidth=2)

# グラフの設定
plt.title('理論値とシミュレーション期待値の比較 (n を変化)', fontsize=16)
plt.xlabel('n (形状パラメータ)', fontsize=14)
plt.ylabel('期待値', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True)

# プロットの表示
plt.show()

\widetilde{Q}(c)はnによらずe^{-\lambda c}に近づきました。グラフの縦軸の範囲が0.13~0.15と非常に狭いため、誤差が拡大して表示されているように見えます。実際の差異はごくわずかです。

2016 Q2(4)

指数分布の和がガンマ分布になることを示しました。

 

コード

指数分布に従う確率変数X1~Xnの和がガンマ分布に従うのをかを確かめるため、シミュレーションを行いました。この実験では、まずn=5の場合について確かめました。

# 2016 Q2(4)  2024.11.18

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma

# パラメータ設定
lambda_value = 2  # 真のλ
n = 5  # 指数分布の和の数 (ガンマ分布の形状パラメータ)
sample_size = 10000  # シミュレーションのサンプルサイズ

# 1. 指数分布の和をシミュレーション
sum_of_exponentials = np.sum(np.random.exponential(scale=1/lambda_value, size=(sample_size, n)), axis=1)

# 2. ガンマ分布の理論値を計算
x = np.linspace(0, max(sum_of_exponentials), 1000)
gamma_pdf = gamma.pdf(x, a=n, scale=1/lambda_value)

# 3. ヒストグラムと理論的なガンマ分布をプロット
plt.figure(figsize=(10, 6))
plt.hist(sum_of_exponentials, bins=50, density=True, alpha=0.6, color='skyblue', label='シミュレーション (指数分布の和)')
plt.plot(x, gamma_pdf, 'r-', label='理論的なガンマ分布', linewidth=2)

# グラフの設定
plt.title('指数分布の和 (n=5) とガンマ分布の比較', fontsize=16)
plt.xlabel('値', fontsize=14)
plt.ylabel('密度', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True)

# プロット表示
plt.show()

5つの指数分布の和は、形状パラメータが5のガンマ分布に一致することが確認できました。

次に、nを変化させてシミュレーションを行い、分布の形状の変化を観察します。また、それらの分布がガンマ分布と一致するかを確認します。

# 2016 Q2(4)  2024.11.18

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma

# パラメータ設定
lambda_value = 2  # 真のλ
n_values = [2, 5, 10, 20]  # nの値を変化させる
sample_size = 10000  # シミュレーションのサンプルサイズ

# 2x2のグリッドでプロット
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()

for i, n in enumerate(n_values):
    # 指数分布の和をシミュレーション
    sum_of_exponentials = np.sum(np.random.exponential(scale=1/lambda_value, size=(sample_size, n)), axis=1)
    
    # ガンマ分布の理論値を計算
    x = np.linspace(0, 20, 1000)  # 横軸の範囲を0~20に設定
    gamma_pdf = gamma.pdf(x, a=n, scale=1/lambda_value)
    
    # ヒストグラムと理論的なガンマ分布をプロット
    ax = axes[i]
    ax.hist(sum_of_exponentials, bins=50, range=(0, 20), density=True, alpha=0.6, color='skyblue', label='シミュレーション (指数分布の和)')
    ax.plot(x, gamma_pdf, 'r-', label='理論的なガンマ分布', linewidth=2)
    
    # グラフの設定
    ax.set_title(f'n={n}', fontsize=14)
    ax.set_xlabel('値', fontsize=12)
    ax.set_ylabel('密度', fontsize=12)
    ax.legend(fontsize=10)
    ax.grid(True)

# 全体のレイアウト調整
plt.suptitle('nを変化させた指数分布の和とガンマ分布の比較', fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()

nが小さいときは分布が右に裾が長くなり、nが大きくなるにつれて左右対称に近づいています。また、どのnにおいても形状パラメータnのガンマ分布とよく一致していることが確認できました。

2016 Q2(3)

指数分布のλと、上側α点を返す関数の最尤推定量を求め、不偏であるか確認しました。

 

コード

最尤推定量\hat{u}(\alpha) = -\bar{X} \log \alphaをシミュレーションし、理論値u(\alpha) = -\frac{1}{\lambda} \log \alphaと比較します。共にグラフに描画し、どの程度一致しているか確認します。

# 2016 Q2(3) 2024.11.17

import numpy as np
import matplotlib.pyplot as plt

# パラメータ設定
lambda_value = 2  # 真のλ
n = 100  # サンプル数
c = 1.0  # Q(c) を計算するための c の値
alpha_values = [0.1, 0.25, 0.5, 0.75, 0.9]  # αの値

# 1. 指数分布からサンプルを生成
samples = np.random.exponential(scale=1/lambda_value, size=n)

# 2. λの最尤推定量を計算
lambda_hat = n / np.sum(samples)

# 3. Q(c) の最尤推定量を計算
Q_hat_c = np.exp(-lambda_hat * c)
Q_theoretical_c = np.exp(-lambda_value * c)

# 4. u(α) の最尤推定量を計算
u_hat_alpha = [-np.mean(samples) * np.log(alpha) for alpha in alpha_values]
u_theoretical_alpha = [-np.log(alpha) / lambda_value for alpha in alpha_values]

# グラフ作成部分
plt.figure(figsize=(10, 6))

# 理論値と最尤推定量の u(α) をプロット
plt.plot(alpha_values, u_theoretical_alpha, 'r-o', label='u(α) 理論値', linewidth=2)
plt.plot(alpha_values, u_hat_alpha, 'b--s', label='u(α) 最尤推定量', linewidth=2)  # 'b--s' で破線とマーカーを指定

# グラフの設定
plt.title('u(α) の理論値と最尤推定量の比較', fontsize=16)
plt.xlabel('α', fontsize=14)
plt.ylabel('u(α)', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True)
plt.xticks(alpha_values)

# グラフの表示
plt.show()

\hat{u}(\alpha) = -\bar{X} \log \alphaはわずかに誤差があるものの概ね一致しました。また誤差はαが大きくなるにつれて小さくなります。その理由は、αが大きくなるとu(α)の値が小さくなり、分布の高密度な部分にサンプルが集中するためと考えられます。

2016 Q2(2)

指数分布の上側α点を返す関数を求めました。

 

コード

パラメータλ=2の指数分布において、Q(c)=P(X>c)をシミュレーションによって求め、理論値と比較します。c=1とします。また、P(X>u(α))=αとなるu(α)も同様に比較します。

# 2016 Q2(2)  2024.11.16

import numpy as np
import matplotlib.pyplot as plt

# パラメータ設定
lambda_value = 2  # λの値
sample_size = 10000  # シミュレーションに使用するサンプル数
c = 1.0  # 上側確率を計算するための定数 c
alpha_values = [0.1, 0.25, 0.5, 0.75, 0.9]  # 上側 100α% 点を確認する α の値

# 1. 上側確率 Q(c) のシミュレーション
random_samples = np.random.exponential(scale=1/lambda_value, size=sample_size)
empirical_prob_c = np.mean(random_samples > c)  # シミュレーションによる上側確率
theoretical_prob_c = np.exp(-lambda_value * c)  # 理論的な上側確率

# 結果表示
print("上側確率 Q(c) のシミュレーション結果")
print(f"理論的な Q(c) = {theoretical_prob_c:.4f}")
print(f"シミュレーションによる Q(c) = {empirical_prob_c:.4f}\n")

# 2. 上側 100α% 点 u(α) の確認
alpha_results = []
for alpha in alpha_values:
    u_alpha = -np.log(alpha) / lambda_value  # 理論的な上側 100α% 点
    empirical_prob_alpha = np.mean(random_samples > u_alpha)  # u(α) を超える割合
    alpha_results.append((alpha, u_alpha, empirical_prob_alpha))

# 結果表示
print("上側 100α% 点 u(α) のシミュレーション結果")
for alpha, u_alpha, empirical_prob_alpha in alpha_results:
    print(f"α = {alpha:.2f} | 理論的な u(α) = {u_alpha:.4f} | 理論的確率P(X>u(α)) = {alpha:.2f} | シミュレーション確率 = {empirical_prob_alpha:.4f}")

# ヒストグラムのプロット
plt.figure(figsize=(10, 6))
plt.hist(random_samples, bins=50, density=True, alpha=0.6, color='skyblue', label='サンプルのヒストグラム')

# 理論的な確率密度関数
x = np.linspace(0, max(random_samples), 1000)
theoretical_pdf = lambda_value * np.exp(-lambda_value * x)
plt.plot(x, theoretical_pdf, 'r-', label='理論的な確率密度関数', linewidth=2)

# 上側 100α% 点 u(α) のプロット
for alpha, u_alpha, _ in alpha_results:
    plt.axvline(u_alpha, linestyle='dashed', label=f'u({alpha}) = {u_alpha:.2f}')

# グラフ設定
plt.title(f'指数分布 Exp({lambda_value}) のシミュレーションと理論分布')
plt.xlabel('x')
plt.ylabel('密度')
plt.legend(fontsize=10)
plt.grid(True)

# プロット表示
plt.show()
上側確率 Q(c) のシミュレーション結果
理論的な Q(c) = 0.1353
シミュレーションによる Q(c) = 0.1365

上側 100α% 点 u(α) のシミュレーション結果
α = 0.10 | 理論的な u(α) = 1.1513 | 理論的確率P(X>u(α)) = 0.10 | シミュレーション確率 = 0.1035
α = 0.25 | 理論的な u(α) = 0.6931 | 理論的確率P(X>u(α)) = 0.25 | シミュレーション確率 = 0.2480
α = 0.50 | 理論的な u(α) = 0.3466 | 理論的確率P(X>u(α)) = 0.50 | シミュレーション確率 = 0.4962
α = 0.75 | 理論的な u(α) = 0.1438 | 理論的確率P(X>u(α)) = 0.75 | シミュレーション確率 = 0.7513
α = 0.90 | 理論的な u(α) = 0.0527 | 理論的確率P(X>u(α)) = 0.90 | シミュレーション確率 = 0.9011

Q(c)=P(X>c)とP(X>u(α))の理論値とシミュレーション結果は非常によく一致しました。

2016 Q2(1)

指数分布の期待値を求めました。

 

コード

指数分布Exp(λ)に従うXの確率密度関数をf(x) = \lambda e^{-\lambda x} \quad (x \geq 0)とするとき、Xのシミュレーションを行い、その分布のヒストグラムと理論的な確率密度関数のグラフを重ねて描画してみます。λ=2とします。

# 2016 Q2(1)  2024.11.15

import numpy as np
import matplotlib.pyplot as plt

# シミュレーションとプロット
def simulate_and_plot_exponential(lambda_value=2, sample_size=50000, bins=100):
    # 指数分布に従う乱数を生成
    random_samples = np.random.exponential(scale=1/lambda_value, size=sample_size)

    # 理論的な確率密度関数を計算
    x = np.linspace(0, 5, 1000)
    theoretical_pdf = lambda_value * np.exp(-lambda_value * x)

    # サンプルのヒストグラムを描画
    plt.figure(figsize=(10, 6))
    plt.hist(random_samples, bins=bins, density=True, alpha=0.6, color='skyblue', label='サンプルのヒストグラム')

    # 理論的な確率密度関数を重ねる
    plt.plot(x, theoretical_pdf, 'r-', label='理論的な確率密度関数', linewidth=2)

    # 期待値を計算
    simulated_mean = np.mean(random_samples)
    theoretical_mean = 1 / lambda_value

    # 期待値を直線でプロット
    plt.axvline(simulated_mean, color='green', linestyle='dashed', linewidth=2, label=f'シミュレーション期待値: {simulated_mean:.2f}')
    plt.axvline(theoretical_mean, color='blue', linestyle='dotted', linewidth=2, label=f'理論期待値: {theoretical_mean:.2f}')

    # グラフの設定
    plt.title(f'指数分布のシミュレーションと理論分布 (λ={lambda_value})', fontsize=16)
    plt.xlabel('x', fontsize=14)
    plt.ylabel('密度', fontsize=14)
    plt.legend(fontsize=12)
    plt.grid(True)

    # プロットを表示
    plt.show()

# 実行
simulate_and_plot_exponential()

Xの分布は、確率密度関数f(x) = \lambda e^{-\lambda x} \quad (x \geq 0)とよく一致しており、シミュレーションで得られた期待値も理論値に非常に近い値となりました。

では、次にλを変化させて同様の実験を行い、グラフの形状の変化と期待値がどのように変化するかを確認します。

# 2016 Q2(1)  2024.11.15

import numpy as np
import matplotlib.pyplot as plt

# シミュレーションとプロット
def simulate_and_plot_adjusted_lambdas(lambdas=[0.5, 1, 2, 3], sample_size=50000, bins=100):
    fig, axes = plt.subplots(2, 2, figsize=(12, 10), sharex=True, sharey=True)
    x = np.linspace(0, 6, 1000)  # 横軸の範囲を0~6に限定

    for i, lambda_value in enumerate(lambdas):
        row, col = divmod(i, 2)
        ax = axes[row, col]
        
        # 乱数生成と理論値計算
        random_samples = np.random.exponential(scale=1/lambda_value, size=sample_size)
        theoretical_pdf = lambda_value * np.exp(-lambda_value * x)
        
        # ヒストグラムと理論分布
        ax.hist(random_samples, bins=bins, range=(0, 6), density=True, alpha=0.6, color='skyblue', label='サンプルのヒストグラム')
        ax.plot(x, theoretical_pdf, 'r-', label='理論的な確率密度関数', linewidth=2)
        
        # 期待値を計算してプロット
        simulated_mean = np.mean(random_samples)
        theoretical_mean = 1 / lambda_value
        ax.axvline(simulated_mean, color='green', linestyle='dashed', linewidth=2, label=f'シミュレーション期待値: {simulated_mean:.2f}')
        ax.axvline(theoretical_mean, color='blue', linestyle='dotted', linewidth=2, label=f'理論期待値: {theoretical_mean:.2f}')
        
        # グラフ設定
        ax.set_xlim(0, 6)  # 横軸を0~6に限定
        ax.set_title(f'λ={lambda_value}', fontsize=14)
        ax.set_xlabel('x', fontsize=12)
        ax.set_ylabel('密度', fontsize=12)
        ax.legend(fontsize=10)
        ax.grid(True)
    
    # 全体のタイトルと調整
    plt.suptitle('異なるλにおける指数分布のシミュレーションと理論分布', fontsize=16)
    plt.tight_layout(rect=[0, 0, 1, 0.96])  # タイトルとの重なり防止
    plt.show()

# 実行
simulate_and_plot_adjusted_lambdas()

λが大きくなるにつれて分布の形状は急こう配になり期待値が小さくなることが確認できました。λの増加によって小さい値が観測される確率が高くなるためだと考えられます。

2019 Q2(4)

損失関数の期待値を導出しそれが最小となるパラメータαを求める問題をやりました。

 

コード

数値シミュレーションによりR(α)が最小値になるαを見つけます。

# 2019 Q2(4)  2024.9.16

import numpy as np
import matplotlib.pyplot as plt

# 損失関数 R(α) の定義
def R(alpha):
    return alpha + 2 / alpha - 2

# α の範囲を設定 (0.1 から 3 まで、細かいステップで計算)
alpha_range = np.linspace(0.1, 3, 1000)

# 損失関数 R(α) の計算
R_values = R(alpha_range)

# 最小値を取る α の確認 (numpy の argmin を使って最小値を見つける)
min_index = np.argmin(R_values)
min_alpha = alpha_range[min_index]
min_R = R_values[min_index]

# グラフのプロット
plt.figure(figsize=(8, 6))
plt.plot(alpha_range, R_values, label='R(α)')
plt.axvline(np.sqrt(2), color='red', linestyle='--', label=r'$\alpha = \sqrt{2}$')
plt.scatter(min_alpha, min_R, color='red', zorder=5, label=f'最小値: α={min_alpha:.2f}, R(α)={min_R:.2f}')
plt.xlabel(r'$\alpha$')
plt.ylabel(r'$R(\alpha)$')
plt.title(r'$R(\alpha)$ の最小値確認 (数値シミュレーション)')
plt.legend()
plt.grid(True)
plt.show()

# 最小値の表示
print(f'数値シミュレーションでの最小値 α: {min_alpha}, R(α): {min_R}')
数値シミュレーションでの最小値 α: 1.4150150150150151, R(α): 0.8284275786822475

手計算と近い値になりました。

極値付近が少し平らなので、αの範囲を1.0~2.0に変更し拡大してみます。

import numpy as np
import matplotlib.pyplot as plt

# 損失関数 R(α) の定義
def R(alpha):
    return alpha + 2 / alpha - 2

# α の範囲を 1 から 2 に設定
alpha_range = np.linspace(1, 2, 1000)

# 損失関数 R(α) の計算
R_values = R(alpha_range)

# 最小値を取る α の確認 (numpy の argmin を使って最小値を見つける)
min_index = np.argmin(R_values)
min_alpha = alpha_range[min_index]
min_R = R_values[min_index]

# グラフのプロット
plt.figure(figsize=(8, 6))
plt.plot(alpha_range, R_values, label='R(α)')
plt.axvline(np.sqrt(2), color='red', linestyle='--', label=r'$\alpha = \sqrt{2}$')
plt.scatter(min_alpha, min_R, color='red', zorder=5, label=f'最小値: α={min_alpha:.4f}, R(α)={min_R:.4f}')
plt.xlabel(r'$\alpha$')
plt.ylabel(r'$R(\alpha)$')
plt.title(r'$R(\alpha)$ の最小値確認 (αの範囲: 1 から 2)')
plt.legend()
plt.grid(True)
plt.show()

# 最小値の表示
print(f'数値シミュレーションでの最小値 α: {min_alpha}, R(α): {min_R}')
数値シミュレーションでの最小値 α: 1.4144144144144144, R(α): 0.8284271532679175

最小値が取れていることが分かりました。

2019 Q2(3)

(2)で求めた確率密度関数において確率変数Uの逆数の期待値を求めました。

 

コード

数式を使って1/Uの期待値を求めます。

# 2019 Q2(3)  2024.9.15

import sympy as sp

# 変数の定義
u, lambda_value = sp.symbols('u lambda', positive=True, real=True)

# ガンマ分布の確率密度関数 g(u) = λ^2 * u * exp(-λ * u)
g_u = lambda_value**2 * u * sp.exp(-lambda_value * u)

# 1/U の期待値の積分
integrand = (1/u) * g_u  # 1/u * g(u)

# 積分の実行
expectation = sp.integrate(integrand, (u, 0, sp.oo))

# 結果の簡略化
expectation_simplified = sp.simplify(expectation)

# 結果の表示
display(expectation_simplified)

手計算と一致します。

次に、数値シミュレーションを行います。

import numpy as np
import matplotlib.pyplot as plt

# パラメータ設定
lambda_value = 2  # λ=2
num_samples = 100000  # サンプルの数

# 指数分布に従う乱数 X1, X2 を生成
X1 = np.random.exponential(scale=1/lambda_value, size=num_samples)
X2 = np.random.exponential(scale=1/lambda_value, size=num_samples)

# U = X1 + X2 の計算
U = X1 + X2

# 1/U の計算
inv_U = 1 / U

# シミュレーションの結果からの平均値
simulation_result = np.mean(inv_U)

# 理論値 E[1/U] = λ
theoretical_value = lambda_value

# 結果の表示
print(f'シミュレーションによる E[1/U]: {simulation_result}')
print(f'理論値 E[1/U]: {theoretical_value}')

# ヒストグラムの描画
plt.hist(inv_U, bins=50, density=True, alpha=0.7, label='シミュレーション結果')
plt.axvline(theoretical_value, color='r', linestyle='--', label=f'理論値 E[1/U] = {theoretical_value}')
plt.xlabel('1/U')
plt.ylabel('確率密度')
plt.title('シミュレーションによる 1/U の分布と理論値の比較')
plt.legend()
plt.show()
シミュレーションによる E[1/U]: 1.9928303711222939
理論値 E[1/U]: 2

シミュレーションによりE[1/U]は理論値に近づきました。分散は発散するためヒストグラムにすると大きなバラつきが見られます。

2019 Q2(2)

独立な指数分布に従う2変数の和の確率密度関数を求めました。

 

コード

数式を使ってUの確率密度関数を求めます。

# 2019 Q2(2)  2024.9.14

import sympy as sp

# 変数の定義
x, u, lambda_value = sp.symbols('x u lambda', positive=True, real=True)

# 指数分布の確率密度関数 (PDF) f(x)
f_x = lambda_value * sp.exp(-lambda_value * x)

# 畳み込み積分を計算して、g(u) = f(x) * f(u - x) の形式にする
g_u = sp.integrate(f_x * lambda_value * sp.exp(-lambda_value * (u - x)), (x, 0, u))

# 簡略化
g_u_simplified = sp.simplify(g_u)

# 結果の表示
display(g_u_simplified)

X1 (X2)と、Uの確率密度関数を重ねて描画してみます。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma

# パラメータ設定
lambda_value = 2  # λ=2
x_range = np.linspace(0, 5, 1000)  # X1, X2 の範囲

# X1, X2 の指数分布の確率密度関数 (PDF) - 同じなので1つにまとめる
pdf_X1_X2 = lambda_value * np.exp(-lambda_value * x_range)

# U = X1 + X2 は形状パラメータk=2、スケールパラメータθ=1/λのガンマ分布
u_range = np.linspace(0, 10, 1000)
pdf_U = gamma.pdf(u_range, a=2, scale=1/lambda_value)

# グラフのプロット
plt.figure(figsize=(8, 6))

# X1 (X2) の指数分布の描画
plt.plot(x_range, pdf_X1_X2, label='X1 (X2) (指数分布)', color='blue', linestyle='--')

# U のガンマ分布の描画
plt.plot(u_range, pdf_U, label='U = X1 + X2 (ガンマ分布)', color='red')

# グラフの装飾
plt.title('X1 (X2) と U の確率密度関数の比較')
plt.xlabel('値')
plt.ylabel('確率密度')
plt.legend()

# グラフの表示
plt.show()

グラフの形状から、U = X1 + X2の関係は想像しづらいですね。

ガンマ分布の形状パラメータを1~2に変化させて、X1 (X2)からUへの変化を確認します。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma

# パラメータ設定
lambda_value = 2  # λ=2
x_range = np.linspace(0, 5, 1000)  # X1, X2, U の範囲を0~5に設定

# ガンマ分布の形状パラメータを1から2まで0.1ずつ変化させる
shape_params = np.arange(1, 2.1, 0.1)  # 1から2までの形状パラメータを0.1ステップで変化

# グラフのプロット
plt.figure(figsize=(8, 6))

# 形状パラメータが1から2に変化するガンマ分布の描画
for k in shape_params:
    gamma_pdf = gamma.pdf(x_range, a=k, scale=1/lambda_value)
    plt.plot(x_range, gamma_pdf, label=f'形状パラメータ k={k:.1f}')

# X1 (X2) の指数分布の描画 - 同じなので1つにまとめる
pdf_X1_X2 = lambda_value * np.exp(-lambda_value * x_range)
plt.plot(x_range, pdf_X1_X2, label='X1 (X2) (指数分布)', color='blue', linestyle='--')

# グラフの装飾
plt.title('指数分布からガンマ分布への変化 (形状パラメータの0.1ステップ変化)')
plt.xlabel('値')
plt.ylabel('確率密度')
plt.legend()

# グラフの表示
plt.show()

X1 (X2)からUへの変化が可視化できました。

次に、X1 (X2)と、Uの累積分布関数を重ねて描画してみます。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import expon, gamma

# パラメータ設定
lambda_value = 2  # λ=2
x_range = np.linspace(0, 5, 1000)  # X1, X2 の範囲

# X1, X2 の指数分布の累積分布関数 (CDF) - 同じなので1つにまとめる
cdf_X1_X2 = expon.cdf(x_range, scale=1/lambda_value)

# U = X1 + X2 は形状パラメータk=2、スケールパラメータθ=1/λのガンマ分布
u_range = np.linspace(0, 10, 1000)
cdf_U = gamma.cdf(u_range, a=2, scale=1/lambda_value)

# グラフのプロット
plt.figure(figsize=(8, 6))

# X1 (X2) の指数分布のCDFの描画
plt.plot(x_range, cdf_X1_X2, label='X1 (X2) (指数分布 CDF)', color='blue', linestyle='--')

# U のガンマ分布のCDFの描画
plt.plot(u_range, cdf_U, label='U = X1 + X2 (ガンマ分布 CDF)', color='red')

# グラフの装飾
plt.title('X1 (X2) と U の累積分布関数 (CDF) の比較')
plt.xlabel('値')
plt.ylabel('累積確率')
plt.legend()

# グラフの表示
plt.show()

グラフの形状から、U = X1 + X2の関係を想像しやすくなりました。

2019 Q2(1)

独立な指数分布に従う2変数の和の期待値を求めました。

 

コード

数式を使ってUの期待値を求めます

import sympy as sp

# 変数の定義
x = sp.Symbol('x', positive=True)
lambda_value = sp.Symbol('lambda', positive=True)

# 指数分布の確率密度関数 (PDF)
f_x = lambda_value * sp.exp(-lambda_value * x)

# 期待値の式を計算 (積分)
E_X1 = sp.integrate(x * f_x, (x, 0, sp.oo))

# 期待値
E_X1_simplified = sp.simplify(E_X1)

# X1 + X2 の場合 (独立性より)
E_U = 2 * E_X1_simplified

# 結果の表示
display(E_U)

手計算と一致します

次にUに従う乱数を生成し分布を確認します。また形状パラメータ2のガンマ分布と重ねて描画します。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma

# パラメータ設定
lambda_value = 2  # 例としてλ=2
num_samples = 1000  # サンプルの数

# 指数分布に従う乱数の生成
X1 = np.random.exponential(scale=1/lambda_value, size=num_samples)
X2 = np.random.exponential(scale=1/lambda_value, size=num_samples)

# U = X1 + X2 の計算
U = X1 + X2

# 理論的な期待値
expected_value = 2 / lambda_value

# シミュレーション結果のヒストグラムのプロット (確率密度にスケール)
plt.hist(U, bins=30, density=True, alpha=0.7, label='シミュレーション結果')

# ガンマ分布 (形状パラメータ k=2, スケールパラメータ θ=1/λ) の確率密度関数 (PDF) を計算
k = 2  # 形状パラメータ (k = 2)
theta = 1 / lambda_value  # スケールパラメータ (θ = 1/λ)

# ガンマ分布に基づくx軸の範囲
x = np.linspace(0, max(U), 1000)

# ガンマ分布の確率密度関数 (PDF) を計算
gamma_pdf = gamma.pdf(x, a=k, scale=theta)

# ガンマ分布の折れ線グラフをプロット
plt.plot(x, gamma_pdf, 'r-', label=f'ガンマ分布 (k={k}, θ={theta:.2f})')

# グラフの装飾
plt.axvline(expected_value, color='g', linestyle='--', label=f'理論値 = {expected_value:.2f}')
plt.xlabel('U = X1 + X2')
plt.ylabel('確率密度')
plt.title('Uの分布とガンマ分布の比較')
plt.legend()
plt.show()

# 実際のサンプル平均値と理論的期待値の比較
print(f'理論的な期待値: {expected_value}')
print(f'シミュレーションからの平均値: {np.mean(U)}')
理論的な期待値: 1.0
シミュレーションからの平均値: 0.9902440726761544

Uの分布と形状パラメータ2のガンマ分布は重なりました。Uはガンマ分布に従うことが分かります。

2021 Q1(4)

独立ではない2つの確率変数の積の期待値を求めました。

コード

数式を使った計算

# 2021 Q1(4)  2024.8.20

import sympy as sp

# シンボリック変数の定義
x, y = sp.symbols('x y')

# h(x) の導出
h_x = sp.integrate(sp.exp(-x), (x, 0, x))

# XY の期待値の計算
# h(x) = 1 - exp(-x) を使って E[X * h(X)] を計算する
integral_part1 = sp.integrate(x * h_x * sp.exp(-x), (x, 0, sp.oo))
E_XY_simplified = sp.simplify(integral_part1)

# 結果の表示
display(sp.Eq(sp.Symbol('h(x)'), h_x))
display(sp.Eq(sp.Symbol('E[XY]'), E_XY_simplified))

指数分布に従う乱数Xを生成し、Y=h(X)Yが一様分布に従うか確認

import numpy as np
import matplotlib.pyplot as plt

# シミュレーションの設定
num_samples = 100000  # サンプル数

# 指数分布に従う乱数 X を生成
X_samples = np.random.exponential(scale=1.0, size=num_samples)

# 関数 Y = h(X) = 1 - exp(-X) を適用して Y を計算
Y_samples = 1 - np.exp(-X_samples)

# ヒストグラムのプロット
plt.figure(figsize=(8, 5))
plt.hist(Y_samples, bins=50, density=True, alpha=0.6, color='g', label='シミュレーションされた Y=h(X)')
plt.xlabel('y')
plt.ylabel('密度')
plt.title('Y = h(X) の分布 (シミュレーション結果)')
plt.legend()
plt.grid(True)
plt.show()

シミュレーションによるE[XY]の計算

import numpy as np

# シミュレーションの設定
num_samples = 100000  # サンプル数

# 指数分布に従う乱数 X を生成
X_samples = np.random.exponential(scale=1.0, size=num_samples)

# 関数 Y = h(X) = 1 - exp(-X) を適用して Y を計算
Y_samples = 1 - np.exp(-X_samples)

# XY の期待値を計算
XY_samples = X_samples * Y_samples
E_XY_simulation = np.mean(XY_samples)

# 結果の表示
print(f"シミュレーションによる E[XY] = {E_XY_simulation}")
print(f"理論値 E[XY] = 3/4 = {3/4}")
シミュレーションによる E[XY] = 0.7473462073557277
理論値 E[XY] = 3/4 = 0.75