ホーム » コードあり » 2021 Q3(2)[2-2]

投稿一覧

2021 Q3(2)[2-2]

ポアソン分布に従う独立な変数の和はパラメータλの十分統計量であることを学びました。

コード

ポアソン分布に従う10個の乱数の和 Tの分布を見てみます。

# 2024 Q3(2)[2-2]  2024.8.27

import numpy as np
import matplotlib.pyplot as plt

# パラメータの設定
lambda_value = 5  # 真のパラメータ
n = 10  # サンプル数
num_simulations = 1000000  # シミュレーション回数

# ポアソン分布に従う n 個のサンプルを生成
samples = np.random.poisson(lambda_value, (num_simulations, n))

# 和 T を計算
T = np.sum(samples, axis=1)

# 和 T のヒストグラムをプロット
plt.hist(T, bins=30, density=True, alpha=0.75, color='blue')
plt.title(f'Tの分布 (n 個のポアソン変数の和)')
plt.xlabel('T')
plt.ylabel('確率密度')
plt.grid(True)
plt.show()

T~Po(nλ)になっています。

つぎにT=50の条件下での確率変数X1の分布を見てます。

# 2024 Q3(2)[2-2]  2024.8.27

import numpy as np
import matplotlib.pyplot as plt

# 条件付き分布の確認
# 例えば、T = 50 の場合におけるサンプルの分布を確認

T_value = 50  # T の特定の値
samples_given_T = samples[np.sum(samples, axis=1) == T_value]

# 確率変数の1つ (X1) の分布をプロット
plt.hist(samples_given_T[:, 0], bins=15, density=True, alpha=0.75, color='green')
plt.title(f'T={T_value} の条件付き X1 の分布')
plt.xlabel('X1')
plt.ylabel('確率密度')
plt.grid(True)
plt.show()

二項分布に従っているようです。

異なるλに対して、和T=50の条件下でのX1の分布を重ねて見てます。

# 2024 Q3(2)[2-2]  2024.8.27

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom

# パラメータ設定
lambda_values = [3, 5, 7]  # 異なる λ の値
n = 10  # サンプル数
num_simulations = 1000000  # シミュレーション回数
T_value = 50  # T の特定の値

plt.figure(figsize=(12, 6))

for lambda_value in lambda_values:
    # ポアソン分布に従う n 個のサンプルを生成
    samples = np.random.poisson(lambda_value, (num_simulations, n))
    
    # T = T_value のサンプルを抽出
    samples_given_T = samples[np.sum(samples, axis=1) == T_value]
    
    # X1 の分布をプロット
    counts, bin_edges, _ = plt.hist(samples_given_T[:, 0], bins=15, density=True, alpha=0.5, label=f'λ = {lambda_value}')

# 理論二項分布を描画
x1_min, x1_max = np.min(samples_given_T[:, 0]), np.max(samples_given_T[:, 0])
x = np.arange(x1_min, x1_max + 1)
estimated_p = 1 / n  # 二項分布の p は 1/n で推定
binom_pmf = binom.pmf(x, T_value, estimated_p)
plt.plot(x, binom_pmf, 'k--', label=f'理論二項分布 Bin(T={T_value}, p=1/{n})')

plt.title(f'X1の分布 (T={T_value} 条件付き) と理論二項分布')
plt.xlabel('X1')
plt.ylabel('確率密度')
plt.legend()
plt.grid(True)
plt.show()

λに依存せず同じ二項分布に従います。よって統計量Tはλに対する十分統計量であることが示されました。

なお、X1~Xnの組は多項分布に従うが、簡単のためX1のみの分布を確認しました。X1は二項分布に従います。